Overview of the COSMO Ontology Project
Last edit September 30, 2021 by Patrick Cassidy

contact: cassidy@micra.com tel: (908) 561-3416

For a brief introduction ('COSMOintro.doc') or the current version of this document (‘COSMOoverview.doc’), or the COSMO ontology file (‘COSMOtop1791.owl’) access the directory:
 http://micra.com/COSMO/COSMO1791/
The COSMO can be viewed in OWL ontology viewers such as Protégé (https://protege.stanford.edu/) . Version 5.2 (in 'older versions' page) is most convenient for viewing this file. Versio3.5 has a mre perspicuous
A PDF presentation describing the current state of development of the COSMO is available at:

 http://micra.com/COSMO/PrimitivesVsClasses1751.pptx

Organization of Topics:

Goal of COSMO Development

History of COSMO Development

Semantic Interoperability

Sources

Purpose and General Approach of COSMO

 Purpose: A foundation ontology

The Longman Defining Vocabulary

Semantic Primitives

Use of the COSMO for Natural Language Understanding

Alternations in Viewpoint

Distinctive Features of High-Level COSMO Entities

 Metatypes = metaclasses

 Top Level

 Notation

 Logical Format

 Distinctive Features of COSMO that Differ From Other Ontologies

 Classes and metaclasses
 (1) Time points and Time intervals

 (2) Events and Processes

 (3) Situations, Events, Processes, and States

 (4) Substance

 (5) Attributes:
 (5.1) General Attribute Structure

 (5.1.1) Attribute

 (5.1.2) AttributeType
 (5.1.3) AttributeValue

 (5.1.3.1) QualitativeAttributeValue

 (5.1.3.2) QuantitativeAttributeValue
 (5.2) Qualitative versus Quantitative AttributeValues

 (5.3) Attributes in Cyc as Objects

(6) Relations:

(6.1) Naming of Relations:

(7)
Three-Dimensional versus Four-Dimensional Object (endurantism versus perdurantism)

 (8) Group

 (9) Sensations and Feelings

 (10) Roles

Some Notes on Restrictions (constraints)

Defaults and nonmonotonic reasoning

Future Extensions and Utilities

References

Goal of COSMO Development
The COSMO ontology is being developed to serve as a "Foundation Ontology" containing as many of the semantic primitives as can be identified, together with more specific concepts that help to clarify the intended meanings of the most general concepts represented. "Semantic Primitives” are the most fundamental concepts whose logical representations can serve as logical components to specify the meanings of any of the domain concepts in domain ontologies or databases by combinations of the primitive elements, and the meanings of which themselves cannot be specified by combinations of the other elements in the ontology . That idea is discussed more fully below in the sections "Purpose and General Approach of COSMO" and "Semantic Primitives". This inventory of Semantic Primitives and related concepts could serve as a common 'defining vocabulary' for the terms and concepts in ontologies and databases that can exchange data accurately, thus enabling "Semantic Interoperability". The question of whether there is in fact some finite set of Semantic Primitives that can be used as building blocks for all domain concepts has been much debated. But it is necessarily true that for any given group of ontologies or databases, there is some set of basic concepts smaller than the total that can be used to provide logical specifications of the entire set. The questions that remain are:
(1) for some large set of ontologies or databases how large is the necessary set of primitives? and

(2) after some set of primitives have been identified, how frequently does that set have to be supplemented to support interoperability with a new domain ontology or database?

The purpose of the COSMO effort is to explore these questions experimentally, by building a Foundation Ontology (FO) that represents as many as can be identified of the basic concepts used in specifying the meanings ('defining') other concepts, and then testing the ontology for each of the two criteria of utility mentioned above.

 After a starting phase that added basic concepts from some different sources of terms and several existing "upper ontologies", the current phase now is to continue to add representations of the common words of the English language. As of September 2021, the most common 15,000 words of English have been represented, and supplementation will continue until the 20,000 most common words have been represented, together with other related concepts that help clarify the meanings. At that point the focus will be on testing the resulting ontology for its ability to support interoperability by linkage with domain ontologies used by other groups. See section '' Semantic Interoperability'' below for more detail about that use case.
History of COSMO Development
The COSMO ontology was initiated as a project of the COSMO working group of the Ontology andTaxonomy Coordinating Working Group, which, after extended discussions discussion and input from members, became inactive in 2006. The ontology is now being expanded by Patrick Cassidy. To achieve its maximum utility, input from other developers of ontologies is necessary, and all comments and suggestions are welcome and encouraged, from any interested party. The practical goal of interoperability can be tested only if multiple ontology users provide an opportunity to test the COSMO for that purpose.

Semantic Interoperability
 The main goal of the COSMO project is to develop a Foundation Ontology (FO) that supports "Semantic Interoperability " among multiple applications. Semantic Interoperability is the ability of two or more domain applications - databases or ontologies or ontology-based applications - to share information accurately, without human intervention. The FO tactic requires that specialized domain ontologies that desire to interoperate and exchange data accurately represent their domain concepts as combinations of the primitive concepts of the FO. When one system wishes to communicate information to others, it must transmit not only the data, but also any logical specifications of the ontology elements required to interpret the data, if they are not already in the foundation ontology or some public extension. Any system that can properly interpret the primitive elements in its local application will be able to properly interpret ontology elements created as a combination of those primitives.

 Different domain developers will often use the same term to represent different concepts, and different terms to represent the same concept. The FO will have unique identifiers for the ontology elements (types, relations, and individuals) representing concepts, but each such element can have many different linguistic tags, effectively synonyms, that are used to refer to that concept (in different contexts), along with a 'sense number' for that tag to distinguish its intended meaning from other uses of that tag. Such tags can be labeled with the specific application that uses that term for that concept. Thus local domains are free to call their domain concepts by any term they choose, adding a domain prefix when using them in an integrated ontology if the terms are identical to any others in the combined ontologies.
Sources
 Many of the types (OWL classes) in the current COSMO have been taken from the OpenCyc OWL version 0.78, and from the SUMO. Other elements were taken from other ontologies (such as BFO and DOLCE) or developed specifically for COSMO. An important source of input for the hierarchy and for English-language definitions (word "glosses") has been the WordNet semantic network from Princeton University. The actual usage in COSMO of the concepts derived from those sources may differ to some degree from the apparent usage in the original sources, so as to fit in with each other and with the logic of COSMO ontology. Thus there is not a 1:1 correspondence of the source terms with the COSMO meanings, though they are usually very close or identical for most cases.
The development of the COSMO started as a merger of basic elements from OpenCyc, SUMO, and DOLCE, and continued up to revision 589 (2008-02-19), at which point the names (labels) of the elements of the COSMO were compared with the words in the Longman defining vocabulary, and out of the 2240 Longman words, it was discovered that 1817 were not present as labels for COSMO elements. At this point, a systematic supplementation of the COSMO was begun, to assure that the concepts represented by the Longman vocabulary were represented in some form in the COSMO. The Longman defining vocabulary is the limited list of words used in the Longman Dictionary of Contemporary English (LDOCE) to created the definitions in that dictionary. This suggests that many or most of the semantic primitives required to specify the logical meanings of concepts would be represented in that list. When additions from this list were completed (revision 1093), there were 8000 owl:Classes in the ontology. However, when additional words from word-frequency lists were added, it was observed that more than a few new owl:ObjectProperties had to be added to properly represent the intended meanings of those added concepts. Since the ObjectProperties appear to be likely semantic primitives (in most cases they cannot be logically specified using other elements of the ontology), it seemed necessary to add new words to discover what other semantic primitives are missing. Thus other word lists were obtained such as a list of 2240 words representing the vocabulary of one 6-year-old child, and subsequently English-language words used as headwords for some of the classes in the OpenCyc (version 0.78), and words from an on-line American Sign Language (AMESLAN) Dictionary. The AMESLAN list was used because that language is close to a complete usable natural language, and was expected to have many or most of the semantic primitives needed to specify the meanings of other words. By the time the AMESLAN list had some representation in the COSMO, the number of new ObjectProperties that needed to be added for each block of added owl:Classes had reached a low asymptote of about one new property per 200 new classes.
 The question remained as to whether the number of new ObjectProperties needed would go lower as new owl:Classes were added, and remain at the same low rate, oe lower. Most recently, words from the frequency list of 20,000 most frequent words in a Brigham Young University text corpus have begun to be added. As of revision 1791 (September 2021) the most frequent 15,000 words in that list have been represented in COSMO. From the completion of additions from the AMESLAN (revision 1687) to the most recent revision 1791, there were 5466 new owl:Classes and 18 new owl:ObjectProperties added, about 0.66 property per 200 classes. So a slow and asymptotic but continuing decrease in the need for new ObjectProperties is observed. This is encouraging that at some point it will be possible to add another 200 classes from among the most common words of English with only an occasional need for new properties.
 It remains to be seen how the number of new ObjectProperties will increase when words from other corpora, especially those of specialized technical domains, are added. This is critical to determine the practicality of using one Foundation Ontology for very broad semantic interoperability. Thus an important continuation will be to find some specialized ontology of more than minimal size whose developer(s) are willing to collaborate in integrating the domain ontology with the COSMO. Direct contact with the domain ontology developer or user is necessary to resolve potential ambiguities and determine if the representations of concepts in the COSMO are compatible with those of the domain ontology, or can be converted by relations in the OWL versions or, if equivalent FOL representations are prepared, by bridging axioms between the FOL versions.
 Also planned as a continuation is the expansion of the COSMO to represent an additional 2624 words present in the most frequent 20,000 words of English but missing from the current COSMO version.. At the present rate that is likely to take at least another year.
 To capture representations of all of the non-technical words a person is likely to use in a lifetime may require representing at least 60,000 words. From an estimate (from at least two sources) that a typical person will use about 900 million words in a lifetime, the 60,000th most common word, estimated from the COCA corpus of 1 billion words as having a frequency of occurrence of 45 times per billion words, would only be used about 41 times, but it is not yet clear whether words below that frequency are used only in specialized contexts.
Purpose and General Approach of COSMO

Purpose: A foundation ontology, as the term is used here, is an ontology that contains representations of all (or as many as are feasible to identify) of the basic, primitive concepts required to serve as building blocks in creating any of the more complex concept representations in any field or for any application. Such an ontology would provide a means to enable broad Semantic Interoperability by allowing applications, or processes within applications, or autonomous agents, to communicate information by using the foundation ontology as a common language. In such computer communication, the common language is represented in a logical format that permits precise and unambiguous specification of meanings. Such a language enables communication that avoids the ambiguity of human language, and enables computer programs to make reliable mission-critical decisions based on communicated information, without human intervention. In addition to serving the immediate practical purpose of enabling semantic interoperability between databases or among computer programs, such a foundation ontology could serve as a common standard of meaning among groups doing research in Natural Language Understanding (NLU). Having a common representation of the meanings of the data elements used in applications would help to accelerate NLU research by enabling a greater degree of reuse of research results from independent groups, based on the common paradigm of meaning represented by the common foundation ontology.
Although it is necessarily true that for some given group of ontologies, there must be some common set of primitive ontology elements that is sufficient to logically specify the intended meanings of the elements of those ontologies, it is an unproven hypothesis that any such set of primitive concepts could suffice for all new domains, or, after some period of testing will need supplementation with new primitives only rarely to accommodate new applications. The results thus far of the COSMO project suggest that for any given set of a few hundred new concepts added to an FO, a new semantic primitive will be needed to represent the relations in the new domain not relevant to other domains.

This question is discussed in more detail below. The purpose of this current phase of the COSMO effort is to provide evidence that such a limited inventory of primitive concept representations does exist, how large it is likely to be, and its use in specifying a logical outline of the basic concepts of English for use as a conceptual 'defining vocabulary' is a practical tactic.

The COSMO ontology is intended to serve as an example of a foundation ontology that can be further developed by a fully open process, containing concept representations suitable for an unrestricted variety of purposes. ‘Open’ means that any person can be a contributor and it is intended to include any ontology elements that are desired by any contributor, provided that the criteria below are met. In this respect, it differs in purpose from most existing foundation ontologies such as OpenCyc, SUMO and DOLCE, in that they were developed by small groups and are also maintained by their creators with little input from those not directly affiliated with the creators (who are the current custodians). At present, COSMO is also being developed and maintained only by one individual (cassidy@micra.com). However, the COSMO is being designed to accommodate alternative ways of representing concepts so that they can be logically translated into each other using 'bridging axioms'. Any other group that is willing to explore links between their efforts and COSMO are encouraged to contact PC at the email address above or by phone at 1-908-561-3416.
The current development method is to create an ontology, represented in OWL, by hand-editing the OWL text file and viewing it and verifying it using the Protégé ontology editor and the Pellet or FACT++ reasoner. COSMO was initially derived mostly from elements (types [classes], relations, and Inference Rules) existing in the public ontologies OpenCyc (http://www.opencyc.org/ The OpenCyc version used was 0.78b OWL version) and SUMO (http://www.ontologyportal.org/ both SUMO and the MILO extension were used). Additional elements were adopted from the BFO (http://www.ifomis.uni-saarland.de/bfo/) and DOLCE (http://www.loa-cnr.it/DOLCE.html) ontologies. As discussed above, other elements representing words from the Longman defining vocabulary and other word lists that were not already represented in the COSMO were added. The formal interpretations of the elements adopted from the public ontologies (such as OpenCyc) were in some cases significantly different from that of the original ontologies, even though the intended meanings were essentially identical. The formal differences reflect a different way of representing some of the basic categories (as for example in the different representation of the relation between physical substances and physical objects, or of attribute values). In such cases the basic intended meanings are still similar, and though they have somewhat different logical properties can in fact be translated accurately onto the representations in the other ontologies, . The COSMO elements (types and properties) should not be considered as equivalent to those of other ontologies referenced, but the references should be viewed only as suggestions for similar elements in other ontologies, to ease understanding of the COSMO for those already familiar with other ontologies. The current version (1791) is in the OWL format, and does not contain any inference rules beyond those using the built-in structures of the OWL format, primarily subclass and subproperty relations and restrictions. As of this version, the chain axioms available in OWL-2 are not used. The COSMO is intended to be available eventually in both OWL and SKIF (http://citeseer.ist.psu.edu/hayes01semantics.html), or some other Common-Logic compliant formats, but the SKIF version has not yet been prepared.
When this expansion is complete, the ontology will serve as a starting version of a “Conceptual Defining vocabulary” (CDV), containing all or most of the basic ontology elements necessary to specify, by combinations of the basic elements, the meaning of any term in any application or field of knowledge. The function of such a CDV is discussed below.
The Longman Defining Vocabulary

The defining vocabulary used in Longman has about 2148 words, not counting prefixes and suffixes. A study by Guo (1989) concluded that there are actually 3800 senses represented by those 2148 words that are used in the Longman definitions. Therefore we anticipated that there would have to be at least 3800 ontology elements (types or relations) in the COSMO when the supplementation with Longman terms was completed. In fact, when completed in revision 1093 there are 7988 owl:Classes and 996 ObjectProperties. The Guo study further determined that as few as 1433 words representing 3280 senses were required to define the remaining Longman defining vocabulary, and iteratively, all of the words in the dictionary. Thus it appears that
an ontology that contains enough semantic primitives to avoid the need for extensive supplementation when a new domain is linked will have not only the minimal set of conceptual primitives, but also ontology representations of other objects and actions that are so closely linked to the most primitive elements that it is not just one but a combination of concepts that form a 'primitive concept', with those elements being in effect 'co-primitive'.

Because it is anticipated that a functional FO will be useful in Natural Language Understanding, it was considered useful to include concepts that are likely to be encountered by children, such as pet animals and household objects, so as to support a vocabulary that can converse fluently with young children, as a means of testing the minimal sufficiency of the FO as a standard of meaning, before taking on sophisticated concepts in academic domains.
The COSMO ontology needs be tested to determine if it can serve as a “conceptual defining vocabulary” (CDV), an ontology analogous in function to the linguistic defining vocabulary of the LDOCE. The goal is that such a base CDV will have a sufficiently complete inventory of basic concept representations to allow creating logical specifications of the meanings of terms in any field, without the need to add to the basic inventory of primitive concepts already in the COSMO. Such testing will need collaboration of other ontology users or developer to be practical.
Semantic Primitives

There is not yet universal agreement that there is in fact a limited set of “semantic primitives” that people can use to construct meanings of complex concepts. The arguments for and against such a notion, as discussed within a Cognitive Science framework, have been summarized by Goddard [1]. The CDV approach takes the notion of semantic primitives as a plausible hypothesis, and the project discussed here is intended to provide evidence that, at least in a formal logical system intended for automated reasoning, the concepts used in communication can be reduced to such a set of primitives. The successful development of a common Foundation Ontology for broad semantic interoperability does not depend on the number of semantic primitives being finite. It is only necessary, at any given point in time, to represent all of the semantic primitives used in the applications or ontologies that are intended to be interoperable. That set of semantic primitives will enable accurate semantic interoperability among the ontologies, databases, or applications that adopt the common FO as the set of elements that can specify the meanings of their domain elements. An effort to identify the full set of semantic primitives nevertheless would have the benefit of minimizing the need to change the FO as new domains are represented using the FO elements. A change to the FO presents a risk that the meanings (logical inferences) of domain elements may also change, and therefore attempting to include all of the semantic primitives in the FO at the earliest stage will minimize the potential for such changes in meaning. The goal of identifying as many as possible of the semantic primitives is intended to provide the best route to minimizing errors in communication of information.
The approach taken here, starting with the relatively simple OWL version and subsequently adding in detail, reflects a belief that for a system as complex and interrelated as a foundation ontology, one (a Person or computer) cannot truly understand any one part until one has some understanding of all of the other parts. Thus the OWL version provides a simpler version that can provide the overview, in a formalism now in widespread use, having perspicuous tools for visualization and logical consistency checking. There may be isolated sets of concepts (such as time intervals) which can be represented almost independently of other concepts, but there are enough highly interrelated concepts to suggest that creation of the framework should be completed before filling in the details. Thus the current approach is to:

· create the hierarchy, basic relations, and some basic restrictions in OWL

· convert the OWL ontology to a CL-compliant language

· add the consequents for each relation, so as to make the meanings of the relations (and of the types related by the relations) machine-interpretable

· test the ontology for effectiveness as a CDV

· from the words used in the tags and in the WordNet glosses and other comments for the ontology elements, identify the "Linguistic Defining Vocabulary" (LDV) that can eventually be used to develop a Natural Language interface that can automatically convert English descriptions of concepts using the LDV into their logical representation.

The basic hierarchy will represent the LDV, and also some other common words familiar to almost every native speaker of English who has achieved the age of six years. The latter desideratum is to ease of development of a Natural Language Interface and a basic conversational program using the ontology as the meaning representation. In practice it is expected that the inventory of basic (‘primitive’) concepts will expand somewhat as additional topics are represented in terms of the COSMO, but it is anticipated that the rate of expansion should become sufficiently small that after several years of testing in applications, the COSMO or some other common FO would be sufficiently stable to serve as a standard of meaning. The secondary goal of keeping the basic foundation ontology as small as possible is intended to make it easier to learn and easier to use, making it more functional as a basis for semantic interoperability. However, it is anticipated that usability will be increased if there is also a set of extensions, such as linked owl ontologies, that can be used to avoid the need for recreating more specialized concept representations already created by others. At the current initial phase, the COSMO is being kept as a single unified ontology to simplify checking the consistency across specialized topics. When desired, segments can be extracted and structured as a linked ontology to reduce the base ontology. For usability issues, see also ‘Extensions and Utilities’ below.
As of revision 1791, it appears that an asymptote of about 0.6 added ObjectProperties per 200 new owl:Classes has been reached. The new ObjectProperties are one measure of the new semantic primitives that are added, and this number suggests that the current version is complete enough to begin testing its potential for use in Semantic Interoperability.
The COSMO contains many elements that are specified as combinations of other elements and therefore are not primitive. These elements are included because they make the ontology easier to understand and easier to use. This also makes interoperability easier to achieve because having more specific classes in appropriate points can ease the search for the appropriate location for new classes within the hierarchy.
The development of the COSMO is intended to serve three purposes, which may conflict to some extent: (1) it should have every basic element required to specify any complex concept that any user wants to specify; (2) it should be as small as possible to serve that purpose; but (3) it should have enough detail under common classes to make it easier to decide where to put new classes. The third desideratum has led to the current phase in which the most common words of English are being represented.
To serve the first criterion, it should permit alternative views of the same entity to coexist, as long as they are logically consistent. The second criterion, of small size, appears to be impractical on the basis of the number of common words still not represented in an ontology of over 25,000 classes. Nevertheless the ontology can serve its purpose by using, for any given domain ontology linked to the COSMO, only those elements required to specify the meanings of the top-level classes of that domain. This will allow producing a domain ontology fully consistent with the COSMO, and, unless other domain ontologies have logically conflicting elements, consistent with other domain ontologies with which data can be exchanged. Since the ObjectProperties (semantic relations) are fundamental to representing meaning and need FOL assertions to specify the implications, they come closest to clearly identifiable primitives. For those
ObjectProperties that are subproperties of other properties, they may not be primitive if they only differ by having a narrower domain or range, with no other nuance in the implications of the relation. The top-level QualitativeAttributeValues have some primitive character, but it may be possible to link them perspicuously to other classes (subtypes of 'ThingWithAttribute') whose meanings can be specified as combinations of other elements, thus eliminating their 'primitive' character. This possibility needs to be determined on a case-by-case (individual attribute) basis at some point.
Use of the COSMO for Natural Language Understanding

As the COSMO is supplemented with elements representing more of the most common words of English, one goal in addition to achieving logical precision in the concept representations for semantic interoperability, will be to map the COSMO elements to words in different texts, labeling those words with unambiguous concepts that can be whose meanings are specific in the COSMO. The use of the WordNet synsets can help because those words have already been used to tag a significant number of texts. Although there is a lot of useful and apparently valid information in the WordNet hierarchy, there are some hierarchical relations in WordNet that do not fit in with the need for logical inheritance of properties down the hierarchy. So, the hierarchy in the COSMO does not track that of WordNet at many points. Nevertheless, having the WordNet tags in the COSMO is expected to facilitate the tagging of texts with the concepts of the COSMO, so that the kinds of language processing that uses the WordNet tags can also be performed on COSMO tags, but with the resulting interpretations subject to verification and logical analysis using the semantic relations in the COSMO. Where logical contradictions may be detected in the interpretation, alternative logically consistent interpretations may be preferred and inferable. Such tagged texts can be used in the manner of the texts of a second language for the translation of other texts from normal English into their logical form using the concepts of the COSMO or of any other foundation ontology(FO) that has achieved widespread usage.
Feedback from such tagging efforts are likely to provide insight into usage that will allow improved tagging and may suggest changes to the organization of the COSMO or other FO. Any FO used in this manner is likely to be improved and refined in multiple iterations over the years as more experience with the FO in language understanding tasks is gained.
When using the WordNet hierarchy the hierarchical links are examined to try to be certain that the logical inheritance of properties is reasonable for the lower subclasses of the ontology . The WordNet hierarchy was not originally created to be used as an inheritance hierarchy for logical inferencing, and the arrangement of the synsets in WordNet, in some cases, does not conform to the arrangement required to represent meanings in an inheritance hierarchy. So the WordNet hierarchy is used by default when it seems to apply, which is more often than not, but its hypernym/hyponym classifications are examined case by case to determine their applicability to the logical inheritance requirement of the COSMO arrangement. Most hierarchical links of WordNet make sense in the logical arrangement, but more than a few have been modified or occasionally ignored.
If the COSMO project were continued to include at least 30,000 of the most common words of English, the language represented might to be sufficiently complete to
provide a useful conceptual defining vocabulary (CDV) to specify the logical structure of most of the other words in the language. It is estimated from the recent development work that at the current rate of development, it will take an additional year of work to represent the 20,000 most common words of English (as well as perhaps 10,000 others not in that list). It cannot be estimated yet how long it would take to get to 30,000 with only one person doing the development.
At some point, it is possible that the WordNet hierarchy below these top levels will include increasing numbers of specialized terms for which the WordNet inheritance hierarchy accurately reflects a true logical hierarchy. There will still be a need to logically specify the differentiae that distinguish each subtype from its parent(s), unless those are automatically included by multiple inheritance from more than one parent.
 Many elements were added to COSMO and referenced to WordNet with the purpose of supporting Natural Language Understanding. However, the representations are still conceptual, and as a result words of different parts of speech (such as verbs and their nominalized forms, or different tenses of verbs) will be mapped to the same COSMO element. It is the task of the language interpreter and reasoner routines to use their linguistic knowledge to create the appropriate representations of the text, with the ontology elements properly related to each other, regardless of the exact form of the linguistic expression of ideas. For adjectives, a number of relations (ObjectProperties) have been included to relate the adjectives to other concepts such as Actions or Objects to which the adjectives refer. Most adverbs are related to a base adjective, usually the same as suggested by the WordNet relation, but because the headword for an adjective may not be the same as the WordNet tag that is correlated with the adverb in WordNet, but a synonymous word, there may not be a simple transparent automatic correlation, so the ObjectProperty that relates the two is necessary. An example of this non-obvious correlation is the adverb ' Tentatively', which is the adverbial form of QualitativeAttributeValue labeled "Provisional"; the WordNet synset for " Provisional" has four terms: "probationary, provisional, provisionary, tentative". The WordNet adverb 'tentatively' points to that synset as the correlated adjective -- therefore in the ontology, the owl:Class to which the COSMO relation "isTheAdverbialFormOf" points from "Tentatively" must be whatever term is the label for that synset. In COSMO, that label is "Provisional".
At a later stage, other data created for use in NL applications, such as FrameNet, will likely be very useful for adding more details of meaning to the elements in COSMO. The first task, however, is to create a consistent foundation ontology with sufficient coverage to serve as a conceptual defining vocabulary.
Alternations in Viewpoint

Some concept types can be referenced linguistically and logically using different logical structures, and this difference may be reflected linguistically. A prominent example in COSMO consists of the notions of ‘Event’ and ‘FunctionalProcess’. In Cyc and SUMO these two notions are intermingled in the type hierarchy, but in COSMO they exist on separate trees of the hierarchy. The two concepts are intimately related, such that one cannot have an instance of Event without an instance of Process. But the representation does not require that instances of both be present in the ontology. In COSMO, most Events are represented without representing a corresponding Process. Another case is the different views of objects labeled ‘3D’ and ‘4D’. See below for more detail.
Distinctive Features of High-Level COSMO Entities
Metatypes = metaclasses
COSMO uses specially defined metatypes (types whose instances are types ("owl:Class"es in OWL). In OWL these 'metatypes' are instances of ''rdfs:Class''. They are also called ‘metaclasses’ when the types are called ‘classes’. An owl:Class may be an instance of more than one rdfs:Class. This conveniently provides a mechanism to allow types (owl:Classes) to be used as arguments in logical assertions. This is necessary in the OWL format, and in some other ontology formats, to allow domains or ranges to specify types to be used as arguments. The specification of a type (owl:Class) as being an instance of a specially defined metatype does not affect the meaning of the type itself, and such type assertions can be ignored in trying to understand the documentation of a type. In a KIF ontology using metatypes in such a manner may be unnecessary for certain cases where the intended object is a Class or subcass of that Class, because one can create a restriction on the arguments to a relation that uses a ‘domainSubclass’ relation, meaning that the argument is a specific class **or any subclass of that class**. Protégé makes a similar distinction between individuals as arguments and classes as arguments. But OWL forces the use of metaclasses (metatypes, in COSMO terminology) when the intended object of the relation is an owl:Class.

The metatypes are mainly important to allow more flexibility in specifying relations among the owl:Classes and their instances. In addition to being directly meaningful where some COSMO concepts that can be viewed as conceptual individuals are represented as types (as with subtypes of PhysicalSubstance or AttributeValue). Allowing an owl:Class as an object of a relation can also obviate the need to specify individual instances as objects of relations on any instance of an owl:Class that in reality always has some instance of an owlClass as its object, but where it would be unnecessary or impractical to determine what the instance is in many cases where a instance of some owl:Class is implied.
By allowing owl:Classes to be used as arguments in assertions, this formalism is also used to allow the assertion of a specific relation between entities using an owl:Restriction without requiring that each instance of the subject owl:Class have an assertion specifying the specific instance of the asserted object owl:Class. The OWL format has flexible means to specify how entities are related, such as 'hasValue' pointing to a specific entity, and 'someValuesFrom', requiring the naming of an instance of the object class for every instance of the subject class represented, and 'allValuesFrom', specifying that only instances of the named object class can serve as an object of that relation on that subject class.
Unfortunately, there is no straightforward way to assert that the object may be an instance of one class but may also be an instance of some other unspecified class, without also requiring that subjects of the ObjectProperty *must* be specified (using 'someValuesFrom') or excluding ll classes other than those named (using the ;allVauesFrom;) relation.. So in COSMO many relations use 'hasValue' pointing to an owl:Class, when the intended meaning is that the object of the relation can be an *instance* of that class (or of some other Class), but it is not convenient or desirable that instances using this relation *must* specify an instance of the class pointed to. The OWL logic is consistent, but the intended meaning is not fully specified using the OWL logic. One means around this problem is the use of "punning" in which a Class can stand in for an instance of that class. But this does not accomplish the intended goal either. It is possible to create a high-level ''PunnedClass" and create instances of that class that point to the intended class, but that would not allow the OWL reasoner to infer the actual intended meaning either. It seems that a solution to this problem will have to wait for an FOL version of the ontology. For the present, pointing to a Class when an instance of that Class is intended still allows the human user to recognize that there is a close relation between subject and object of the property assertion, and also can provide a link for Deep Learning programs to use for statistical interpretation of texts using those classes.
In such a case using the class itself of the object (where the domain or range permit it) can serve as a 'place-holder' for the instance of that class, in a sense 'spoofing' the actual logical relation. An FOL implementation can use such structures as a signal to create , when desired, an ad-hoc instance in place of the Class used as object, in a process called "Skolemization'. Places where such Skolemization is intended will have to be signaled by some formalism which is not currently part of the COSMO OWL version.

Thus, for some cases in COSMO the use of type-level relations rather than instance-level ‘someValuesFrom’ restrictions is in effect a place-holder, serving as an instruction to the implementing reasoner that there is a slot (relation) associated with each instance of the subject, but that the implied instance of the object Class need not be created by Skolemization. At some point, whether or not to Skolemize an instance may be determined by some form of heuristics in an FOL version; for the present, the type-level relations are there to mark where implied relations form an essential part of the meaning of a concept, but where these relations are *not* intended to specify that the reasoner create an instance – or refuse to accept input data if the implied instance is not also present. How to implement such an instruction may require some procedures to supplement the existing reasoners available. That issue is left for the future.

The practical nuisance resulting from this format requirement is that the metatype for each type that can be used as the argument of a relation must be specified individually for each type. Sometimes multiple metatypes need to be specified. It should be possible to create a utility that will add a metatype assertion to each subtype of some specific type, but that utility has not yet (as of COSMO v0.90) been developed. Since the metatypes are being added by hand, many that should be specified have not been (due to simple oversight). This can result in an error message when one uses a relation on types, and the proper metatype has not yet been added (such an error can also occur due to misuse of a relation – one must carefully analyze the error to determine which is the cause). If the omission is an oversight, addition of the necessary metatype can occur without otherwise modifying the changing the logic.
The use of relations on types is essential to implement the structure of the COSMO, in which individual ‘QualitativeAttributeValue’s (such as Color) are represented as types, rather than instances of types; likewise, ‘PhysicalSubstance’s and ‘Role’s are represented as types, not instances of types. In a CL-compliant language this formalism might not be necessary, since the transitive subsumption relation effected by the subclass relation in COSMO-OWL can be accomplished with a different relation and rules specifying how the more general values subsume the more specific values. That rule-based kind of subsumption for attributes is used in SUMO.

In certain restrictions in COSMO, where the intent is to limit the values of some relations to certain types of entity, in using types (classes) rather than individuals for Substances and QualitativeAttributes does not permit capturing the intended implied meaning, . For example, to say that the attribute ‘InMotion’ applies to objects that are the logical agents in a ‘Motion’ event, COSMO uses:

 <isTheAttributeOfSomethingDoing rdf:resource="#Motion"/>
This formalism does not permit the subAttributes of ‘InMotion’ to inherit that restriction. The translation mechanism into a CL-compliant form will have to treat such restrictions with Substances or QualitativeAttributes as values in a special way. In the OWL format such restrictions need to be added to each subtype of the AttributeValue or Substance.
 Top Level
The most general concept representations in the COSMO include the types: Object, Attribute, GenericLocation, GenericSubstance, GenericAgent, Role, TemporalLocation, Group, and SituationProcessEventOrState. The last type aggregates the notions of Event, Process, and State, which are closely related to each other in COSMO.
Although ‘Person’ and ‘Organization’ and ‘Account’ are subtypes of other types below the top level, the OWL version asserts a superfluous but logically harmless direct subtype relation to owl:Thing, so that these common types appear at the top level and can readily be found in browsing, as in the Protégé ontology editor.

Many of the notions that are commonly referred to as ‘abstract’ are classified under MentalObject in COSMO. A ‘MentalObject’ is an Object created by an IntelligentAgent (person, organization, group of people, automaton) that is not a PhysicalObject. The criterion for being a PhysicalObject is to have mass (‘mass’ is interpreted relativistically as equivalent to energy, so a photon and other subatomic particles all have mass.)

Notation

In the following discussion, logical assertions are presented in a notation that corresponds to the SKIF notation (a variant of KIF, see http://citeseer.ist.psu.edu/hayes01semantics.html), where relations may be of multiple arity and assertions are contained within parentheses as delimiters, with the relation name as the first element, such as:

 (hasColor Car23 Red).
This discussion also uses a variant of the SKIF notation, called ESKIF (‘English SKIF’) in which the delimiters are curly braces, and the order of the first two elements in the assertion is inverted, so that the relation (the 'ObjectProperty') is the second element. This allows assertions that have a syntactic structure closer to English, such as:

 {Car23 hasColor Red}.

Together with the consistent use of verbal phrases to name relations, such as ‘hasColor’ or ‘hasLength’ rather than the nominal “color” or “length” (often used in databases and some ontologies), this allows logical assertions to take a form that is easier for an English-speaking reader to understand rapidly. In this formalism, the traditional parentheses may be used as delimiters, but mostly for using functions that can return a value, with the function as the first element.
With that type of representation, if this project gets to a stage of language interpretation where input from casual volunteers can be useful, it would be helpful to take texts written by people, who are the sole experts on its correct meaning, and after analyzing the text with the FO, return that interpretation to the author in the ESKIF format close to English, to determine if it agrees with the intended meaning, and where not, to propose alternate interpretations The capability of the system to accurately interpret English should be improvable by such a feedback process.
Logical Format

The COSMO ontology as of version 0.90 revision 1791 is still available only in the OWL format. This has two reasons: first, because at the early formation stages of COSMO, OWL and the utilities that use the OWL format (the Protégé editor and Pellet and FACT++ reasoners) provide a convenient environment to create the basic outline of the COSMO, without rules other than the built-in OWL restrictions, and to check the logical consistency. Second, OWL is a widely-used format, and because the purpose of the COSMO is to serve as a common ontology for a wide range of uses, it is anticipated that COSMO will, when fully developed, be maintained in OWL, and automatically converted to SKIF or some other Common-Logic-Compliant first-order logic notation, for applications such as language understanding, where the greater expressiveness of the FOL notation is required.
Distinctive Features of COSMO that Differ From Other Ontologies
Some of the distinctive features of the COSMO differ from similar elements in other foundation ontologies. Examples are:

Terminology:
Classes and metaclasses: the fundamental categories called ‘Class’ in OpenCyc and SUMO is called ‘Type’ in COSMO, according to the preference of the COSMO working group. In the OWL version these types are represented as owl:Classes. COSMO also uses metaclasses (represented as "rdfs:Class"es), which have owl:Classes as their instances. The metaclasses are useful for specifying relations in various ways.
(1) Time points and Time intervals
a. In COSMO, a TimePoint is a subtype of TimeInterval, each TimePoint being identical to a closed TimeInterval whose beginning and ending points are identical, i.e. a TimePoint is a closed TimeInterval of zero length. This reflects an interpretation of the time line as isomorphic to the real number line. However, models that do not require real numbers can also be used, if they are logically consistent with that interpretation.
(2) Events and Processes

a. Events and Processes are considered distinct in COSMO, though in Cyc (this shortened form of the name will be used for reference to OpenCyc) and SUMO they are intermingled in the Type hierarchy. The ID names of Event types in COSMO sometimes end in ‘Event’, but are often named as

the gerundive of a verb, such as ‘Sewing’.
b. It may be better to try for more consistency in naming, if the names prove to be confusing. For example, when a gerundive "-ing' term is used to represent an adjective, the corresponding verb may be represented as "-ingEvent" to distinguish the two.

 (3) a. Situations, Events, Processes, and States: are all instances of subtypes of the top-level type ‘SituationProcessEventOrState’, and are represented as subtypes of Group, meaning that they consist of multiple constituent elements. They are represented as Groups of Assertions that are time-indexed; each Assertion specifies the value for some ‘fluent’ (attribute or relation) at some particular time, or within some TimeInterval. It is true that an Assertion can also be represented as a Group of Assertions, but the intended meaning in these two cases is very different. A ‘SituationProcessEventOrState’ is not an Assertion, but the formal representations are related to each other solely as an efficient means of representation.
c. The fundamental element in both an Event and a Process is a State, which may be an InstantaneousState (no extension in time) or a PersistentState (in which the attributes or relations represented do not change during some interval of time). Each such State is represented as an Assertion or Group of Assertions specifying the properties and relations of a System (which can be a single Object or multiple Objects), at some TimePoint or in some TimeInterval. (Such a state for one of the participant Objects is similar to the “fluents” used in some other Process representations.)
d. A Process (called ‘FunctionalProcess’ in COSMO to avoid confusion with many other interpretations of the word ‘Process’) is a Group of Assertions that can be interpreted (and, if desired, represented) as a Function from TimePoints to the InstantaneousStates of a System, defined within some TimeInterval. This differs from the representation of an Event as being the Group of such assertions. This is intended to capture the intuition of the actual change of 'fluents' (the assertions) over time, rather that representing just the Group of such assertions.
(4) Substance
‘Substance’ in COSMO is not a piece of matter (a ''PhysicalObject'') as in CYC, but type of entity of which a piece of matter is composed. In COSMO a substance may be viewed metaphorically as the mathematical derivative of a piece of matter with respect to volume; a PhysicalSubstance filling some three-dimensional region of space constitutes a PhysicalObject. This treatment makes the interpretation of mixtures more intuitively satisfying than treating substances as a piece of some particular constitution, and is closer to the linguistic usage, distinguishing count nouns (Objects) from mass nouns (Substances). Each PhysicalSubstance has some granularity, which is a linear or cubic space measure; no PhysicalObject that is smaller than that granularity can be considered as composed of that PhysicalSubstance. For example, ‘Sand’ is a substance composed of many sand grains, each of which has a maximum length between 1 mm and 0.1 mm. The granularity for each substance will be at least twice the maximum grain size, therefore a group of sand grains that is smaller than 2 mm must be treated as a Group of objects (sand grains), rather than as the substance ''Sand''. There are different types of Sand, depending on the substance of which it is composed. Similarly, a small number of molecules of some chemical substance (e.g. Ethyl Alcohol) will not have the aggregate properties of the larger quantities whose properties are measured physically, , and should be treated as a Group of molecules rather than as a COSMO ''Substance''. Each Substance is a Type (class) and may have subtypes.
There are borderline cases where an aggregation of individual objects can behave as, and be viewed as a Substance. The type ‘CommodityProduct’ is a subtype of Substance that does treat multiples of individual objects (especially those sold in bulk in commerce) as a Substance. It is disjoint with, and must not be confused with ‘PluralThing’ which can be an Object.

In some ontologies (such as OpenCYC), the notion of a "substance" is represented as a piece of some substance, such as a PhysicalObject. This manner of representation can be interconverted directly into or from the primary COSMO technique of distinguishing substances from an object composed of that substance. Thus the two manners of representation are not incompatible and can be interconverted to allow interoperability of ontologies using the different representations.

In COSMO there are 'substances' that are not traditional physical substances like Gold or Sand, but are more abstract, such as "Money" and "Energy" and "Information" Each of these has corresponding Objects composed of some quantity of the substance.

(5) Attributes:
(5.1) General Attribute Structure

 ‘Attributes’ in COSMO are categorized into three main general types:

 ''Attribute'' and ''AttributeType'' and ''AttributeValue''.
 This division recognizes the difference, for example, between the general term 'Color ' (a subclass of ''AttributeType'' and specific colors like ''Red'' (an ''AttributeValue''). An additional distinction is the difference between AttributeValues that are represented in English as adjectives (e.g. 'elegant'), and qualities, which are represented as nouns (such as 'elegance'). In COSMO, that distinction is interpreted by representing a "Quality" as the state of something that 'has' some "AttributeValue"; to be 'elegant' at some time is to have 'elegance' at that time.
The more generic ''Attribute'' includes combinations of the two above, so that one can express the assertion that a ''Violet'' (a flower) has the color ''VioletColor'' by either the use of the specialized relation ''hasColor'':

 Violet hasColor VioletColor
or the use the more general relation ''hasAttribute'' using a more complex object:
 Violet hasAttribute VioletColored

where the type ''VioletColored'' is defined by:

 VioletColored hasAttributeType Color
 takesValue VioletColor
The use of the general relation ''hasAttribute'' in effect allows creation of attribute values that specify not only the ''AttributeValue'' but also the generic type of the AttributeValue, along with the AttributeValue, and reduces the need for new ObjectProperties.

 This is one tactic to address the temptation in constructing an ontology to create a new specific ObjectProperty for certain types of specialized relations, by providing a means to create the intended meanings using already existing elements, thus minimizing the need to create new FOL implications for the new ObjectProperty when the FOL version is prepared. Minimizing the number of new ObjectProperties also reduces the burden of learning the terminology of the Ontology, which depends heavily on use of properties to express relations between elements. Similar tactics are used for types other than attributes to reduce the need for new ObjectProperties by providing more general relations to complex types. This is also one method to work around the binary relation limitation of OWL when higher-arity relations would be more convenient.
(5.1.1) Attribute

Each instance of '‘Attribute'’ has two components: the ‘AttributeType’ and the ‘AttributeValue’. An instance of Attribute whose type and value are already defined may then be used as the value of the relation ‘hasAttribute’. However, it is also possible to assert that something has an AttributeValue by directly using the relation ‘hasAttributeValue’:
 Car23 hasAttributeValue Red
Such assertions can be unambiguous if the AttributeValue is a value of only *one* AttributeType. Otherwise, the tactic mentioned above for ''VioletColor'' provides a general method of asserting ''AttributeValue''s without creating specialized ObjectProperties.

In the case of length (or distance) measures, there would be an ambiguity when using '' hasAttributeValue '' because such measures may specify length, width, distance of separation, height above ground, and other attributes whose values take a 'length measure'. In those cases it is necessary to use assertions that include the AttributeType being referenced. In some cases, there are special relations defined for convenience for common AttributeTypes such as ‘hasLength’ or ‘hasColor’ where the AttributeType of the value is implied in the relation. COSMO attributes are structured so that it is not necessary to define a special relation such as ‘hasColor’ if an AttributeType such as ‘Color’ is already represented in the ontology, but where desired (and for ease of mapping to other ontologies) specific subrelations of ‘hasAttributeValue’ such as ‘hasColor’ may be defined . This formalism is adopted to allow creating assertions that are close to the English linguistic usage, e.g. for the ship "BlackPearl":

 TheBlackPearl hasLength TwoHundredFiftyFeet
 where: TwoHundredFiftyFeet hasUnit feet
 TwoHundredFiftyFeet hasQuantifier N_250
and ''N_250'' is defined as an instance of ''NonNegativeInteger with a value of '250'.
One can alternatively create a ''owl:DatatypeProperty'' such as ''hasLengthInFeet'' specifying the dimension of the value. This has the same disadvantage as creating new ObjectProperties, in that an FOL version would need to define such properties for their logical implications. In COSMO both methods for representing the QuantitativeAttributes of things are used, with the more specific DatatypeProperties created when they are likely to be used often.
(5.1.2) AttributeType
Each AttributeType is a subtype (not an instance) of the type ‘AttributeType’. (‘AttributeType’ is an owl:Class, not a metatype (rdfs:Class) in the ontology – this is one of only a few cases where a term ending in ‘type’ is *not* a metaClass, i.e. an instance of rdfs:Class).
There are several subtypes and uses of ''AttributeType'', so it is not itself narrowly defined .

(5.1.2.1) One use of ''AttributeType'' is the one described above, to allow an inherently ternary relation to be represented as a binary relation (''hasAttribute'') with an object that is a pair representing an ''AttributeType'' and an ''AttributeValue''. This is illustrated by the example above, where the owl:Class ''VioletColored'' is defined by:

 VioletColored hasAttributeType Color
 takesValue VioletColor

and then instead of creating a specialized ObjectProperty like ''hasColor'' the relation ''hasAttribute'' can point to a defined owl:Class that specifies both the ''AttributeType'' and the ''AttributeValue''.

(5.1.2.2) Another use is to represent the subtype ''Quality'', a kind of 'property' or 'attribute'. The term 'quality' has been used in various senses, generally referring to 'properties' or 'attributes' that may be associated with something. One of the WordNet glosses for 'quality' states:
 quality - (an essential and distinguishing attribute of something

 or someone; 'the quality of mercy is not strained'--Shakespeare)
In COSMO a ''Quality' or one of its subtypes are often nominalized adjectives ending in '-ness' or 'ity' , or entries with similar effect that are subtypes of ''HavingAnAttribute''. ''Quality'' and its subClasses are all subClasses of ''PersistentState'', which is a state that continues for some period of time while some facet or attribute of that state remains unchanged. The relationship between a ''Quality'' and its associated AttributeValue (linguistically, an adjective is exemplified by:
 "Elegance" "isTheQualityOfSomethingWithAttribute" "Elegant"
 and, conversely,
 "Elegant" "isAnAttributeOfSomethingWithQuality" "Elegance"

The AttributeValue can also be related with the relation:

 "Elegant" "isAnAttributeOfSomethingHaving" "Elegance"

This last relation can be expressed linguistically as:

 To be Elegant is to have Elegance.

This is only one use of the relation "isAnAttributeOfSomethingHaving", which can refer to 'having' someting in various other way, and is less specific than the relation "isAnAttributeOfSomethingWithQuality".

 Thus, something has ''Elegance'' as long as it continues being ''Elegant''. To have Elegance is to be Elegant.

(5.1.3) AttributeValue
Each ‘AttributeValue’ may be a subtype of the generic type ‘AttributeValue’ or an instance of ‘AttributeValueType’. Among the ''AttributeValue''s are ''QualitativeAttributeValues''s and '' QuantitativeAttributeValues''s ''. Individual QualitativeAttributeValues that are used in assertions of attributes are subtypes rather than instances of the generic type ''AttributeValue''. This formalism is adopted to allow creating taxonomies of AttributeValues without using a special taxonomic relation for the attribute instances. This reflects the use of the principle of ‘attribute regions’ where, for example, the color ‘reddish’ represents a wide variety of colors that have different hues that could be considered as having some ‘red’ component.

(5.1.3.1) QualitativeAttributeValue
If an object (Object23) has a violet color, this may be represented (using the ESKIF {} formalism):

 {Object23 hasAttribute VioletColored}

 {VioletColored hasAttributeType Color}
 {VioletColored takesValue VioletColor}
or alternatively: {Object23 hasColor VioletColored}

(5.1.3.2) QuantitativeAttributeValue
''QuantitativeAttributeValue''s consist of a quantifier (usually a number) and a unit of measure, and each such value is an instance (not a subtype) of QuantitativeAttributeValue. To give an example for "25 cents" in FOL using ESKIF notation would be {25 centsUS } where ‘centsUS’ would be a function that takes a quantifier and returns an instance of '' MoneyMeasure''. Another way of stating that in ESKIF without using functions, and where "cents" is the US unit of currency, would be:
 { TwentyFiveCentsUS isAnInstanceOf MoneyMeasure}

 { TwentyFiveCentsUS hasQuantifier N_25}

 { TwentyFiveCentsUS hasUnit cents }

Or, in COSMO the same quantity would be represented using the OWL/RDF notation in the COSMO.owl file:

 <MoneyMeasure rdf:ID="TwentyFiveCentsUS">

 <hasQuantifier rdf:resource="#N_25"/>

 <hasUnit rdf:resource="#cents "/>

 </MoneyMeasure>

Since attributes can change over time, a 'TimeSlice' of an Object can be used to assert the value during some TimeInterval. Thus, if a Person (‘JohnJacobDoe’) has a height of 1.75 meters during 2007, this may be represented in ESKIF notation as:

 { JohnJacobDoe2007 isaTimeSliceOf JohnJacobDoe }
 { JohnJacobDoe2007 hasStartingTimePoint Date20070101 }

 { JohnJacobDoe2007 hasEndingTimePoint Date20071231 }

 { JohnJacobDoe2007 hasAttribute Height1_75meters}

 { Height1_75meters hasAttributeType Height}

 { Height1_75meters hasValue {1.75 meters)}

This representation illustrates how both '4D' and '3D" Objects can be represented consistently within the same ontology.
 (5.2) Qualitative versus Quantitative AttributeValues
Some (but not all) "QualitativeAttributeValue"s are treated as "attribute regions" and represented as Types (owl:Classes) for which each subtype is a smaller, more precise region than its parent type; the QualitativeAttributeValue is the owl:Class itself, not an instance of the owl:Class. In OWL this requires the use of metatypes (metaclasses) to serve as the arguments of relations that take " QualitativeAttributeValue "s as their values. Each qualitative attribute must then be marked as an instance of the appropriate metatype. This marking of metatypes would be mostly unnecessary in a first-order system (and in classic Protege) where it would be possible to specify that argument values are either a type or some subtype of that type. This is a limitation of OWL and some other ontology systems that is a nuisance, but can be lived with.
 The treatment of "QualitativeAttributeValue"s as types can be viewed as one manner of treating the actual instances of the values of the attributes of objects as “tropes”, specific to and inseparable from the object instance of which it is an attribute. The assignment of a QualitativeAttribute that is a type as the value for the attribute of that object is then interpreted as meaning that the actual attribute instance, the trope inseparable from the object, has a value within the attribute region represented by the type that represents the QualitativeAttribute, but the specific value within that region is not more explicitly specified.

For quantitative attributes, on the other hand, though it is possible to use a similar mechanism to express, for example, measurements with tighter ranges of confidence as subattributes (sub-measures?) of a measure with a wider range of confidence, this mechanism may seem unnatural to users. For quantitative measures, the confidence intervals will be specified by a confidence range associated with each measure, either explicitly or by some default mechanism.

(5.3) Attributes in Cyc as Objects

In Cyc, some attributes are represented as the objects that have those attributes, rather than as Attributes per se. For example, ‘Baked” in Cyc is a food object that has been baked, not an attribute of baked food. Similarly, "Flexible" is the class of objects that are flexible, rather than the Attribute itself. Because these term usages differ from their intuitive linguistic usage, the Cyc usage has not been adopted, and such terms are represented as AttributeValues, and the objects that have those AttributeValues are represented differently, specifically as things that have those particular attributes explicitly asserted, and such objects are then subtypes of "ThingWithAttribute", which would be the parent type for attributes in a system that adopts the CYC convention. These two ways of representn attributes are interchangeable and can be directlt converted
(6) Relations:
(6.1) Naming of Relations:
Relations are named in the verbal form (‘isTheMotherOf’ rather than ‘mother’) to make the directionality of the relation clear. This has the virtue that the property assertion can appear close enough to ordinary English to be comprehensible by people not familiar with the ontology language, e.g.
 JaneDoe isTheMotherOf MaryDoe

This can be useful when the computer automatically creates inferences from a text, and then presents those inferences to the author of the text to request verification or correction. In that way, accurate logical representations of texts can be created for future inference.

Present versus past in the relation names

The past tense is sometimes (alas, not always) used in relations in COSMO to signify that the relation refers to an instance of an Event - all Events are considered to be contained within some time interval and therefore have an End time - even if the end time is in the future. Event is represented from the point of reference where it is already completed. Thus the relation ‘occurredAt’ relates an Event to the Location where the Event took place – if it is a planned or hypothetical Event, the location will be the planned or expected location. This rule is not consistently followed, and needs to be systematized.
 The present tense in a relation may be used in several ways. It may be a Class-level relation, relating one Type of entity to another Type of entity. Thus a Species may be related to a type of Habitat it is commonly found in by the relation ‘hasTypicalHabitat’. Structural descriptions of things will also use the present tense. But where relations among individuals are named in the present tense (e.g. isLocatedAt) they are used with the assumption that the context will make clear the time interval in which the relation is asserted to hold true.
At version 0.90, it was found that to inherit properties without adding duplicative property relations, the above distinctions were sometimes ignored. This aspect of representation needs to be carefully re-analyzed when creating the FOL version.

 (6.2) Relations on Instances and Types:
Relations in COSMO can relate instances of types or types (owl:Classses) themselves.

Relations on instances that can vary with time should be time-indexed in some way, but the binary relation restriction in OWL makes that complicated. One way used in COSMO to include time indexing is to make an instance of Object or Attribute also an instance of TimeSlice. The interpretation of a relation on a TimeSlice will be that the relation holds only during the time interval specified by the TimeSlice.

Relations on types can be used in several ways.

(6.2.1) In COSMO, qualitative Attributes are each represented by a type, so relations assigning attribute values (such as ‘hasAttributeValue’ or ‘hasColor’) may point to a subtype of AttributeValue. Likewise, PhysicalSubstances are representing only as types, and have no instances; so the relation ‘hasComponentSubstance’ relates one substance to some other substance that forms one component of the whole substance. Both subject and object of this relation are types, because PhysicalSubstances are only represented as types.
(6.2.2) Another use is to specify a necessary relationship among instances, without triggering a logical instantiation or a search for an instantiation. This in effect is a muted form of restriction that can be represented in OWL in the form ‘restriction onProperty: someValesFrom’. but when represented in that manner, the reasoner will indicate an error if an instance of the subject does not have an explicit relation to an instance of the object. This is discussed above under ''Metatypes = metaclasses ''. The relation on types is used to indicate that there is a necessary relation among instances, but it is not required that the instances be specified. In an FOL version, the instance can be creed when desired by '' Skolemization ''. But in an OWL version, we can say that <TelephoneCall uses Telephone>, indicating that every TelephoneCall must use a Telephone – but when the restriction uses "hasValuee" rather than "someValuesFrom", an instance of TelephoneCall can be represented in the ontology without representing the instance of Telephone used in that TelephoneCall. When COSMO is converted to a CL-compliant language, the relations on types may be restructured to take advantage of the greater expressivity of that formalism.

(6.2.3) When it is desirable to represent the fact that a certain relation typically or prototypically holds between two entities, in COSMO special relations containing the string ‘typically’ are created and used. This is a crude temporary measure to fit such probabilistic or default notions into the OWL format, and would be elaborated when the ontology is converted to a CL-compliant form. Similarly, relations starting with "may . . ." might be represented with some probability number to be more specific about the likelihood.
 Some Type-Type Relations that are used to imply existence of some object Entity for each instance of a subject Entity
	Relation
	Domain
	Range

	hasSpatialPartType
	LocationType
	LocationType

	typicallyOccursInside
	EventType or Event
	PhysicalObjectType

	isTypicallyaPhysicalPartOf
	PhysicalObject or PhysicalObjectType
	PhysicalObjectType

(7)
Three-Dimensional versus Four-Dimensional Object (endurantism versus perdurantism)
There has been considerable philosophical debate over whether physical objects should be viewed as ‘three-dimensional’ objects that exist wholly and entirely at each point in time, and move through time, or as ‘four-dimensional’ objects that have the traditional three spatial dimensions but also extend in time. In COSMO a ‘PhysicalObject’ is neither three nor four-dimensional, but a more generic type that can be either three- or four-dimensional; it is neutral with respect to the three or four-dimensional viewpoints. A ‘four-dimensional’ object persists through some interval of time (which may be a zero-duration instant) , and it has temporal parts that persist through some interval of time, each interval being included in the larger interval that defines the whole object. In COSMO, three or four-dimension objects are considered as different but logically consistent views of the same basic entity. To implement this, individual instances of PhysicalObject can be also declared as instances of the type ‘TimeSlice’. Each such TimeSlice has a begin time point and an end time point, and is equivalent to a ‘time slice’ of a perdurantist four-dimensional object, specifically that part of the whole-life object that exists in the time interval specified by the begin and end time points of the TimeSlice. Attributes and relations declared by ObjectProperties on such an object TimeSlice are understood to persist with equal values at all time points within the time interval of that TimeSlice. The difference from full four-dimensional representation is that this formalism allows relations to be declared on PhysicalObjects that are not time slices. Such a relation may be encapsulated within a wrapper that declares the relation to hold in some time interval (e.g. an object may be in some location for some interval of time). If not encapsulated within such a time-specifying wrapper, and not declared as an instance of ''TimeSlice'', relations on PhysicalObjects may be ambiguous as to how long they persist. This provides alternative ways to specify relations on PhysicalObjects. A region of space can also be instantiated as a TimeSlice, and in this case the resulting region would be a four-dimensional region of space-time.
 To some extent, the type ‘TimeSlice’ is similar to the Cyc ‘TemporalThing’. But the usage of the Cyc TemporalThing differs, at least to the extent that in Cyc all PhysicalObjects are instances of TemporalThing. That representation is not followed in COSMO. In COSMO, one is allowed to state relations on PhysicalObjects without specifying the TimeInterval in which the relation holds. The interpretation of such assertions will depend on the implementing context. When interpretation depends on specifying the time interval during which a relation holds, the time-sensitive entity(s) can be represented as an instance of ''TimeSlice'', with the time interval thus specified.
(8) Group
 COSMO uses a type labeled ‘Group’ that is not a mathematical set (is not defined extensionally) and has the property that a Group with one element in it is identical to that one element, and no Group can exist without at least one element. This notion of ‘Group’ is useful for representing certain types of complex concepts that include components of different type, without adopting the conventions (such as extensional definition and null content) that accompany the use of mathematical sets.
The COSMO ''Group'' is in some respects similar to a mereological sum, and has no conceptual components other than the individual elements of the Group, and in particular is not dependent on any relations among the elements of the Group. Therefore a Group that contains only one element is identical to that element. Relations among the elements of a ''Group'' may be specified by properties asserted on that Group, making it a subtype of the generic ''Group''; thus, an ''OrderedGroup'' can have a type of ordering specified.
One subtype of Group is ‘PluralThing’, which is an object consisting of at least two individual objects. There is a related Substance concept of ‘CommodityProduct’ which represents multiple objects sold as a group, often in bulk, such as ‘Beans’ or ‘Onions’. The substance sense or the Object sense could be used to refer to multiple entities, but the ‘CommodityProduct’ must be treated as a substance, and the ‘PluralThing’ treated as an object. This is another example (along with ‘Event’ and ‘FunctionalProcess’) of how alternative views can be taken of certain entities, as individuals and as aggregates.

(9) Sensations and Feelings
‘Feelings’ such as sadness or happiness are categorized in COSMO as a subtypes of both ‘StrictlyMentalEvent’ and ‘PersistentState’. Individual States are instances of ‘Event’ in COSMO, and Feelings are considered as states of an animal’s mind. This sense of ‘feeling’ corresponds to verb sense 1 of ‘feel’ in WordNet;

1. (182) feel, experience -- (undergo an emotional sensation; "She felt resentful"; "He felt regret")
Another sense of the word ‘feel’ is to perceive something with the sense of touch or from some internal similar sensation; this sense is a subtype of ‘perceiving’ in COSMO. This corresponds to verb sense 3 of ‘feel’; in WordNet:

 3. (69) feel, sense -- (perceive by a physical sensation, e.g., coming from the skin or muscles; "He felt the wind"; "She felt an object brushing her arm"; "He felt his flesh crawl"; "She felt the heat when she got out of the car")
These two senses of ‘feel’ are on separate branches of the type hierarchy. The branch including ‘perceiving’ and ‘sensation’ are partially mental actions that are not necessarily stative, i.e. the attributes of the objects involved can change during the course of the action. The branch including ‘feeling’ and ‘emotion’, though also Events, are strictly mental and stative – a ‘feeling’ is the same ‘feeling’ as long as that instance of Feeling persists. There can, of course, be several Feelings being experienced at one time, each of which could be represented by a different State, or by a combined Feeing that includes several individually characterized Feelings as "subEvent''s.
 In WordNet there are two senses of ‘Odor’ and ‘fragrance’, one corresponding to a sensation, and one to a property of an object. The senses corresponding to a ‘sensation’ will be subtypes of the type ‘Sensation’ in COSMO.
(10) Roles
 In COSMO a ''Role'' is not disjoint with any other type. In some ontologies, an Object can play a ''Role'' , but cannot be both an Object and a Role, keeping Roles distinct from the things that play that Role. In COSMO, something can be an Object, such as a Person, and also be a ''Role''. So in COSMO a ''Student'' is a subtype of both ''Person'' and ''Role''. For COSMO to be used together with such an ontology either the 'disjoint' assertions on Roles in the non-COSMO ontology must be deleted, or the elements of COSMO that are subtypes of both ''Role'' and ''Object'' must be changed to assert that that Object is not a subtype of ''Role'' but ''fillsTheRoleOf'' some Role.
Some Notes on Restrictions (constraints)
In order to encode meanings at the level that approach human understanding, it is often necessary to specify implications for the existence of certain entities, or for when certain relations hold between entities. OWL (without SWRL) does not provide for arbitrary rules that would encode such implications, but there is a type of OWL restriction that can serve in part to encode implications, and reduce the ambiguity of entities represented in OWL. Several types of restriction are supported in OWL, including the domain and range restrictions for relations. One type of restriction that is problematic to apply is the ‘existential’ or ‘forall-exists’ type of restriction, which asserts that if a certain condition holds, an entity of a certain type must exist (an 'existential' restrition); in OWL this uses a 'owl:someValuesFrom' element in a restriction to capture the logical meaning. For example, we might want to say that every person has a birth mother. This kind of restriction could be encoded in OWL, as in a restriction on 'Person':

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasMother"/>

 <owl:someValuesFrom rdf:resource="# BirthMother "/>

 </owl:Restriction>

 </rdfs:subClassOf>

However, if one encodes such a restriction, it then becomes necessary, when instantiating a Person, to also instantiate the implied mother – whether or not there is any information about the mother. In some cases, it is desirable and not burdensome to instantiate implied individual entities, but in other cases, it seems unnecessary and likely to be more burdensome than useful. As of version 0.90, there is no consistent usage adopted for COSMO to determine when such an existential restriction will be used. For PhysicalObjects, the COSMO specification does not require that each instance have some mass value – although that is the defining characteristic of a PhysicalObject. In the many cases where it is desirable to instantiate a PhysicalObject (such as a building), but its mass is not even approximately known, a value of “-1” can be used to represent an unknown value. This value satisfies the restriction that *some* value must be present, even if it is not known. The burden in this specific case is small enough to be acceptable,

but as the ontology developed even this small effort was annoying enough that the requirement to specify a mass value was eliminated, and the restriction was changed to:

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasMassInGrams"/>

 <owl:allValuesFrom rdf:resource="&xsd;float"/>

 </owl:Restriction>

 </rdfs:subClassOf>

where 'owl:allValuesFrom' specifies what type the value should be, but does not require that a value be specified. When an approximate value of the mass of some object is known, (such as a weight of 70 kg for a person whose weight is not known), such an approximate value can be entered and may be useful in reasoning even when not fully accurate. The implementation will be responsible for properly interpreting such values.
 Thus in cases where it appears that the burden of instantiating implied entities is not justified, a different type of restriction is used, in effect as a place-holder until more detailed semantics are encoded in an FOL language and different implementing program. Instead of using the OWL ‘someValuesFrom’ to require an instantiation of the value for a relation, the OWL ‘allValuesFrom’ is used, or OWL ‘hasValue’, when the type of value rather than an instance of value can serve to suggest to the data enterer what kind of value can be used to add useful information, when known. These restrictions may not in fact assert anything more than the type restrictions on the relation itself (for an example where there is a more specific assertion, see next paragraph), but they are used to mark places in the ontology where some additional axioms or restrictions would be useful to make the meanings of the elements more specific.

 Restrictions involving relations on types can be used to assert some degree of specificity to an entity. This is exemplified by the restriction on the event ‘Baking’:

 <typicallyOccursInside rdf:resource="#Oven"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#usedDevice"/>

 <owl:hasValue rdf:resource="#Oven"/>

 </owl:Restriction>

 </rdfs:subClassOf>

In this case, the ‘usedDevice’ relation, which can relate any event to any Device, is specifically used to assert that each instance of a ‘Baking’ event used some oven, though it does not require (as do existential statements) that the specific instance of Oven used be identified. Similarly, for the Action of ‘Narrating’ there is a restriction:
 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#produces"/>

 <owl:hasValue rdf:resource="#Narrative"/>

 </owl:Restriction>

 </rdfs:subClassOf>

Again, the intention of this usage is to specify that there is *some* narrative produced by every instance of ‘Narrating’, but to avoid using the ‘someValuesFrom’ restriction so that the OWL reasoner does not demand instantiation of an instance of ‘Narrative’. If the ''Narrative'' produced has a name that can be referenced later, the relation 'produced' can be used, and the specific instance of Narrative can be named.
Using a relation in that manner without requiring that the value be instantiated, in addition to providing a suggestion to the data enterer to add that value when known , can also be useful if the ontology is used within a "Deep Learning" system to specify salient relations between concepts (and their labels) that can add logical and non-statistical "meaning" to the links inferred from large numbers of examples of usage. These relations can also be used in an FOL implementation of the ontology that can automatically generate "unknown values" if the user finds that useful (a process referred to as "Skolemization").
 In the special cases of entities that are represented solely by owl:Classes and not by instances of owl:Classes , 'restrictions' of the OWL type do not capture the intended logic. Thus for PhysicalSubstances and QualitativeAttributeValues, relations to other entities in the ontology need to be specified at the type level, so that the relation between a Quality and an AttributeValue '' isTheQualityOfSomethingWithAttribute'' is asserted directly at the level of the owl:Class thus we use the OWL assertion on the owl:Class ''Pleasantness'':

 <isTheQualityOfSomethingWithAttribute rdf:resource="#Pleasant"/>

and the relation between an '' AlcoholicBeverage'' and alcohol is expressed as:
 <hasComponentSubstance rdf:resource="#EthylAlcohol"/>
Such assertion are usually intended to apply to all subtypes of a ''QualitativeAttributeValue'' or a '' PhysicalSubstances'', but such Class-level assertions are not inherited, and need to be asserted for each subclass, if they are considered necessary for that subtype. This is one of the disadvantages of representing substances and QualitativeAttributeValues as owl:Classes, but is nevertheless considered useful to retain closer alignment with linguistic usage. In an FOL implementation, rules can be created to automatically infer such inheritance.
 By use of such restrictions, the expressively incomplete OWL language can still provide some detail of meaning that can serve as a beginning point for greater elaboration when the ontology is converted to a FOL language.
Defaults and nonmonotonic reasoning

 The COSMO has several relations between types of entities that represent a “default” implication, such as ‘typicallyOccursAt’ for events that usually occur in a particular type of location – such as baseball games being played on a baseball field. These relations have the string ‘typically’ embedded in the name of the relation. For each such relation there is also an instance-level relation such as "occuredAt" which can assert that a particular event actually occurred at a particular location, or that some type of Event always occurs at some type of Location.
In the restricted OWL language, defaults can be asserted, but do not directly express the intended meaning that can be used by the OWL reasoners. The proper implications will need a language and reasoner with FOL or higher expressivity. In CYC, most assertions are taken as default and CYC can handle exceptions. COSMO has no such capability.
 Some COSMO relations are specifically intended as relations between instances, and asserting such a relation on some individual that is not an instance of the specified type would generate a contradiction.

However, COSMO also has some relations whose label begins 'typically', with the intended meaning that there are known exceptions to the relation. An FOL reasoner could use the ‘typically’ relations as defaults wherever that seems advisory. To use these relations in a nonmonotonic manner, it will be necessary to also assert a rule that blocks the default when a more specific contradictory assertion is present in the database. Thus there might be a rule that concludes that, in the absence of specific information to the contrary, conclude that the default is true, e.g.:
For example, the relation '' typicallyOccursAt'' can take an instance of location or an instance of ''LocationType'' as its object, so one can assert that instances of a particular ''Event'' or of a particular ''EventType'' occur at some specific 'location' or ''LocationType'', e.g. professional football games usually occur at some '' BallPark ''. Thus to express the case where an instance of a "BallGame" typically occurs at some instance of ''BallPark'" (which is an instance of ''LocationType''), in KIF notation would be:

 (typicallyOccursAt BallGame BallPark)

But the reasoner will not consider it a contradiction if a " BallGame" occurred somewhere other than a " BallPark", such as a city street.

In general, In English:

 "If an instance of some type of Event typically occurs at some particular instance of a LocationType, and that instance of Event in fact occurred at a location that is not an instance of that LocationType, then the Event occurred at some instance of LocationType that is not an instance of the default LocationType." - But this inference is not a contradiction to the default assertion.

 Using Terminology:

 LocationType is the generic metatype for locations ,and

 ?LocationType1 is some Type of Location, an instance of LocationType

 and an instance of owl:Class

 ?Location1 is an 'individual' entity, not an owl:Class , an instance of

 some owl:Class that is an instance of LocationType1,

 EventType is the generic metatype for events ,and

 ? EventType1 is some Type of event, (an instance of EventType

 and an instance of owl:Class)

 ? Event1 is an 'individual' entity, not an owl:Class , an instance of

 some owl:Class that is an instance of EventType1,

 Using those terms, Expressed in KIF notation the logic might be (with 'forall' prefix omitted):

 (implies

 (and

 (typicallyOccursAt ?EventType1 ?LocationType1)

 (isanInstanceOf ?EventType1 EventType)

 (isanInstanceOf ?LocationType1 LocationType)

 (occurredAt ?Event1 ?Location1)

 (isanInstanceOf ?Event1 ?EventType1)

 (not (isanInstanceOf ?Location1 ?LocationType1))

)

 (exists (?Loc2)

 (and

 (occurredAt ?Event1 ?Loc2)

 (isanInstanceOf ?Loc2 ?LocationType2)

 (isanInstanceOf ?LocationType2 LocationType)

 (disjoint ?LocationType2 ?LocationType1)

)

)

)

The same relations for the more specific EventType of "SoccerGame" would be:
 (and

 (typicallyOccursAt SoccerGame SoccerField)

 (occurredAt ?SoccerGame1 ?BackYard 1)

 (isanInstanceOf ?SoccerGame1 SoccerGame)

 (isanInstanceOf ?BackYard 1 BackYard)

 (isanInstanceOf BackYard LocationType)

 (isaSubTypeOf GameType EventType)

 (isanInstanceOf SoccerGame GameType)

 (isanInstanceOf SoccerField LocationType)

 (disjoint BackYard SoccerField)

)
 This set of assertions would not be considered contradictory by the reasoner, which will treat a 'typically' relation as a default.
For 'typically' assertions it may be preferable for a reasoner to assert a ‘probability’ that the relation holds, rather than just assuming that the default holds. This choice can be dependent on the application. The ‘typically’ relations merely provide the information needed to implement such default reasoning where desirable. To assert more quantitative probability values, different assertions implying different levels of probability could be created.
Future Extensions and Utilities

Although the original intension of the COSMO effort was to keep the ontology small so as to make the learning process simpler, as additional words were added it has become more apparent that a broad base of common concepts related to each other would be sufficiently useful that the disadvantages of the larger number of concepts would be outweighed by the ease of finding the proper location for specialized concepts within a coherent broad-based ontology. Since almost all of the commonly used concepts in COSMO have perspicuous English labels, whenever some parent type of a specialized concept has an English label, the proper location in the hierarchy can be usually found, and the OWL 5 viewer will display the relations often used with that type, making the insertion of new concepts and relating them to other concepts likely more easy as it would be for a smaller ontology. This should also make domain ontologies linked to a Foundation Ontology (FO) like COSMO less likely to develop inconsistencies.
The owl:Classes representing most concepts in the COSMO each have one or more English-language labels that allow relatively easy search. Many of the ObjectProperties, on the other hand, are not captured by single words or common phrases, and keeping these elements to the minimum needed to capture the essential meanings of concepts now appears to be a desirable goal. The ObjectProperties appear to be closest in function to the notion of logical 'semantic primitives' that can form the building blocks of a full vocabulary of concepts, together with other primitives that capture the functions of objects, attributes, perception and action, time and location.

The COSMO has reached a point where testing its ability to serve as a common interlingua for integrating multiple domain ontologies would be a useful further goal. Such domain ontologies, to be optimally useful, should be already used in some application that can provide a measure of how integration with OWL could increase or reduce their functionality. Thus, close cooperation with the custodians of those ontologies will be necessary. Linkage to domain ontologies not yet used in an application may also be helpful in finding useful high-level concepts not yet included in COSMO, provided that the custodian collaborates in the integration. Since most domain applications are optimized to minimize the time of execution, it seems intuitively likely that adding top-level elements from a Foundation Ontology would increase the execution time to some extent. But the additional time required could be a small fraction of the total, and the benefits of accurate interoperability with other applications could greatly outweigh the cost in time-efficiency. The need to determine the reduction, if any, in computational efficiency is an important goal that needs to be answered, for which purpose interaction with groups that have an ontology-based application that can provide such a metric is now highly desirable.
In domain ontologies linked to the COSMO there will be many common concepts that can be maintained in the ontology that can function as an optional extension to the COSMO (or any other core FO), to avoid the need for recreating the same concept representation multiple times, and to minimize the chance that concepts with the same intended meaning are created with different logical specifications. Such extensions could be maintained separately and integrated when needed into the portion of the COSMO that is required to specify the meanings of all the terms in the domain ontology, as well as the COSMO concepts needed to specify the terms in any other domain ontology linked for the purpose of semantic integration.
The existence of alternative representations and of extensions in COSMO will create the need for utilities to quickly find whether a concept needed for some application has already been added to one of the extensions. Optimally, a powerful natural-language interface will allow one to define a concept using the terms of the LDV (and its extensions), and to have the system report whether such a concept is already present in the core or in some extension. Such a utility can function as a search engine, returning several existing candidate representations, and therefore need not have perfect human-level accuracy.
The multiple alternative representations allowed in COSMO could lead to inefficiency in reasoning, relative to a more restrictive ontology that uses only one view of any given entity. However the alternative representations will be needed only for interoperability
among applications, and individual local applications can select out only those elements and the specific alternative representation required or desired for the local application, avoiding the computational inefficiency of redundant representations. In this way, full semantic interoperability can be achieved among applications, without sacrifice of efficiency. A utility to select only those concept representations required for local use would be an important tool for routing use of COSMO, or any other foundation ontology.
 * * * * * * * * * * * * * * * * * *

References
Guo’s work with the Longman:
Guo, Cheng-ming (1989) Constructing a machine-tractable dictionary from "Longman Dictionary of Contemporary English" (Ph. D. Thesis), New Mexico State University.

Guo, Cheng-ming (editor) Machine Tractable Dictionaries: Design and Construction, Ablex Publishing Co., Norwood NJ (1995)
Yorick Wilks, Brian Slator, and Louise Guthrie, Electric Words: Dictionaries, Computers, and Meanings, MIT Press, Cambridge Mass (1996).

An article discussing the need for a common vocabulary for information exchange.

 Doug Lenat, Voice of the Turtle: Whatever Happened to AI?, AI Magazine Volume 29 Number 2 (2008)
American Sign Language (AMESLAN) Dictionary used:

 Available (December 2020) at: https://www.handspeak.com/
[1] Cliff Goddard, Bad Arguments Against Semantic Primitives. Theoretical Linguistics, Vol. 24 (1998), No. 2-3: 129-156.

